Learning to write programs that generate images
Through a humans eyes, the world is much more than just the images reflected in our corneas. For example, when we look at a building and admire the intricacies of its design, we can appreciate the craftsmanship it requires. This ability to interpret objects through the tools that created them gives us a richer understanding of the world and is an important aspect of our intelligence.We would like our systems to create similarly rich representations of the world. For example, when observing an image of a painting we would like them to understand the brush strokes used to create it and not just the pixels that represent it on a screen.In this work, we equipped artificial agents with the same tools that we use to generate images and demonstrate that they can reason about how digits, characters and portraits are constructed. Crucially, they learn to do this by themselves and without the need for human-labelled datasets. This contrasts with recent research which has so far relied on learning from human demonstrations, which can be a time-intensive process.Read More
Related Google News:
- Scaling deep retrieval with TensorFlow Recommenders and Vertex AI Matching Engine May 1, 2023
- Seeing the World: Vertex AI Vision Developer Toolkit May 1, 2023
- BBC: Keeping up with a busy news day with an end-to-end serverless architecture May 1, 2023
- Scalable electronic trading on Google Cloud: A business case with BidFX May 1, 2023
- Google Cloud and Equinix: Building Excellence in ML Operations (MLOps) May 1, 2023
- Google Docs can make a table of contents for you — here’s how May 1, 2023
- 20 new Chrome themes from Asian American and Pacific Islander artists May 1, 2023
- Effingo: the internal Google copy service moving data at scale May 1, 2023